

INSTITUTE OF ENGINEERING, JIWAJI UNIVERSITY

Alpana Sharma

Subject:-Digital image Processing (CS-8302)

Topic:- Different types of digital Images

Semester: - B.E. Eight Semester

Classification of Digital Images

- Digital Images can be broadly classified in to two types:
 - 1) Raster Image
 - 2) Vector Image
 - A raster image file is defined as a rectangular array of regularly sampled values known as pixels.

or

- Graphics made up of tiny squares are called raster images.
 (squares refer to "pixels")
- Scanned graphics and web graphics are the most common forms of raster images.
- Raster images are <u>mapped to grids which are easily</u> scalable.

1. Raster Image or Bitmap Image (Cont.)

- A raster image is <u>resolution dependent</u> because it contains a fixed number of pixels that are used to create the image.
- Since there are fixed and limited number of pixels, a raster image will lose the quality if it is enlarged beyond that number of pixels as the computer will have to 'make up' for the missing information.
- The spatial resolution of a raster image is determined by the resolution of the acquisition device and the quality of the original data source.
- Common raster image formats include:
 - BMP (Windows Bitmap)
 - PCX (Paintbrush)
 - TIFF (Tag Interleave Format)
 - JPEG (Joint Photographics Experts Group)
 - GIF (Graphics Interchange Format)
 - PNG (Portable Network Graphics)
 - PSD (Adobe Photoshop) and
 - CPT (Corel PhotoPaint)

2. Vector Image

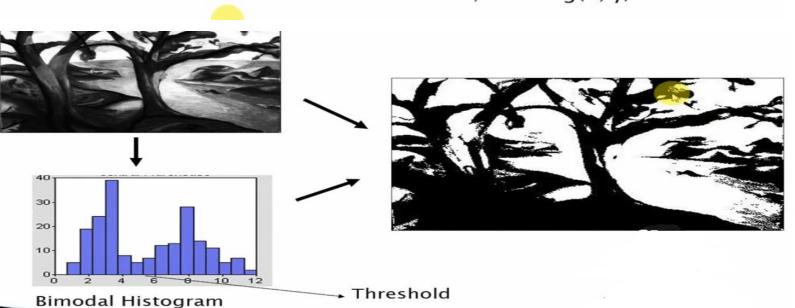
- A vector image is defined by <u>objects which are made of lines and</u> <u>curves that are mathematically defined</u> in the computer.
- A vector can have <u>various attributes</u> such as line <u>thickness</u>, <u>length</u> and <u>color</u>.
- Vector Images are mathematically defined and hence they are easily scalable.
- This implies that vectors can be printed at any size on any output device, at any resolution, without losing the detail and without altering the resolution of the image.
- As compared to raster images, vector images can be scaled by several factors without altering the resolution of the image.
- Vector images are thus suitable for typography, line art and illustrations.

Image Types

- Images can be broadly of four types:
 - 1) Black and White or Binary Images
 - 2) Grayscale Images
 - 3) Color Images
 - 4) Multispectral Images

1. Binary Images

- Images with only two values (0 or 1)
- Simple to process and analyze
- Very useful for industrial applications
- Obtained from gray-level (or color) image g(x, y) by Thresholding



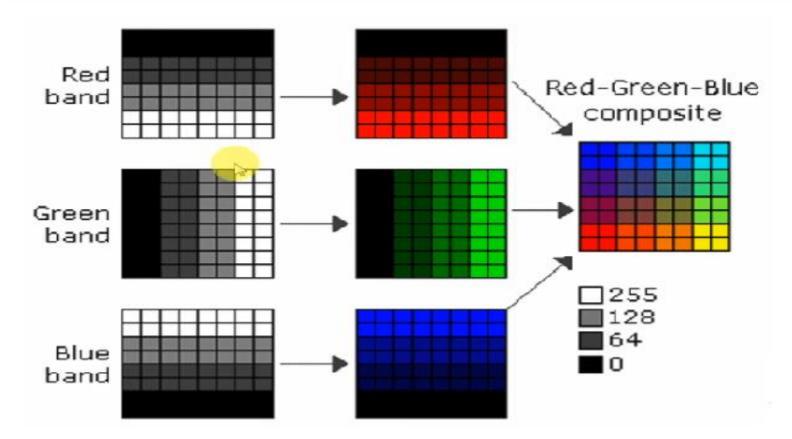
Characteristic Function

 $b(x,\,y) = \qquad 1 \qquad ; \qquad \text{ if } g(x,\,y) < T$

 $0 \qquad ; \qquad \text{if } g(x,\,y) >= T$

2. Grayscale Images

- Grayscale images are referred to as monochrome (one color) images.
- They contain gray-level information, no color information.
- The number of bits used for each pixel determines the number of different gray levels available.
- The typical grayscale image for example may contains 8bits/pixel data, which allows us to have 256 different gray levels.
- In applications like medical imaging and astronomy, 12 or 16 bits/pixel images are used.
- These extra gray levels become useful when a small section of the image is made much larger to discern details.



Grayscale images

3. Color Images

- Color images can be modeled as three-band monochrome image data, where each band of data corresponds to a different color.
- The actual information stored in the digital image data is the gray-level information in each spectral band.

- Typical color images are represented as red, green, and blue (RGB images).
- Using the 8-bit monochrome standard as a model, the corresponding color image would have 24-bits/pixel (8-bits for each of the three color bands red, green, and blue).

Binary Grayscale Color

4. Volume Image

- A three-dimensional image is an example of volume image.
- The volume image can be obtained from some medical imaging equipment in which individual data points are called 'voxels'.
- Voxels stand for volume pixels.

5. Range Image


- These are special class of digital images.
- Each pixel of a range image expresses the <u>distance between</u> a known reference frame and a visible point in the screen.
- The range image reproduces the 3D structure of a scene.
- Range images are also referred to as depth images

6. Multispectral Image

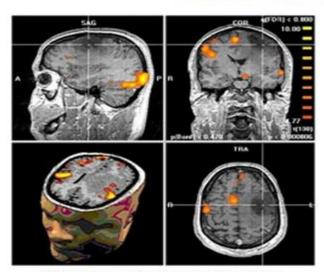
- Multispectral images typically contain information outside the normal human perceptual range.
- This may include infrared, ultraviolet, X-ray, acoustic, or radar data.
- These are not images in the usual sense because the information represented is not directly visible by the human system.
- However, the information is often represented in visual form by mapping the different spectral bands to RGB components.

Ultrasound Imaging

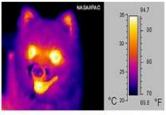
Microwaves

Ultrasonic spectrum

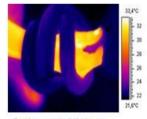
Ultrasonic Baby image during pragnancy


Ultrasound image acquisition device

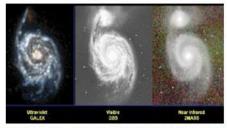
Synthetic Aperture Rada


Synthetic Aperture Radar System

Radio Waves



MRI image slices from the brain


Infrared

infrared ("thermal") image

Snake around the arm

Messier 51 in ultraviolet (GALEX), visible (DSS), and near infrared (2MASS). Courtesy of James Fanson.

REFERENCES

- Anil K. Jain , "Fundamentals of digital Image processing", Prentice Hall, 1997.
- Rafael C. Gonzales, Richard E. Woods,"Second Edition, Pearson Education, 2004.
- Chi-Wah Kok, Wing –Shan Tam," Digital Image Interpolation in Matlab", John Wiley & Sons, 14-Dec-2018.

THANKS